estimated standard deviations

C(1)-C(2) C(1)-C(13) C(1)-N C(2)-C(3) C(3)-C(15) C(4)-C(5) C(4)-C(5) C(5)-C(6) C(6)-C(16) C(7)-C(16) C(7)-C(17) C(7)-C(11) C(7)-C(11)	1-401 (8) 1-362 (8) 1-490 (7) 1-346 (9) 1-425 (9) 1-381 (8) 1-402 (8) 1-397 (8) 1-388 (8) 1-477 (8) 1-477 (8) 1-477 (8) 1-477 (8) 1-477 (8) 1-425 (7)	$\begin{array}{c} C(9)-C(10)\\ C(9)-C(21)\\ C(10)-C(11)\\ C(11)-C(12)\\ C(12)-C(13)\\ C(12)-C(17)\\ C(13)-C(14)\\ C(14)-C(15)\\ C(14)-C(16)\\ C(18)-C(19)\\ C(19)-C(20)\\ C(20)-C(21)\\ \end{array}$	1-398 (8) 1-401 (8) 1-365 (8) 1-403 (7) 1-481 (7) 1-481 (7) 1-445 (8) 1-418 (7) 1-373 (10) 1-373 (10) 1-414 (9) 1-343 (9)
C(8) = C(9)	1.433 (8)	N = O(2)	1.719 (7)
C(0) = C(17)	1 434 (7)	N = O(2)	1 222 (6)
	1.424 (7)	N=O(3)	1.233 (0)
C(8) = C(18)	1.437 (9)		
C(2) - C(1) - C(13)	125.5 (6)	C(1) - C(13) - C(12)	127.4 (5)
C(2) - C(1) - N	112.9 (5)	C(1) = C(13) = C(14)	115-3 (5)
C(13) - C(1) - N	121.5 (5)	C(12) - C(13) - C(14)	117.1 (5)
C(1) - C(2) - C(3)	118.0 (6)	C(13) - C(14) - C(15)	120.5 (5)
C(2) = C(2) = C(3)	121.6 (6)	C(13) - C(14) - C(15)	110.8 (5)
C(2) = C(3) = C(15)	120.1 (6)	C(15) = C(14) = C(16)	119.6 (5)
C(4) = C(5) = C(13)	119.6 (6)	C(13) = C(14) = C(10)	177.0 (5)
C(5) - C(6) - C(16)	121.6 (6)	C(3) = C(15) = C(14)	118.3 (6)
C(16) - C(7) - C(17)	116.4 (5)	C(4) - C(15) - C(14)	110.7 (5)
C(16) - C(7) - O(1)	120.3 (6)	C(6) - C(16) - C(7)	120.2 (5)
C(17) = C(7) = O(1)	123.3 (6)	C(6) = C(16) = C(14)	119.1 (5)
C(9) = C(8) = C(17)	119.1 (5)	C(7) - C(16) - C(14)	120.6 (5)
C(9) - C(8) - C(18)	117.3 (6)	C(7) - C(17) - C(8)	121.7 (5)
C(17) - C(8) - C(18)	123.1 (6)	C(7) = C(17) = C(12)	117.7(5)
C(8)-C(9)-C(10)	118.7 (5)	C(8) - C(17) - C(12)	120.6 (5)
C(8)-C(9)-C(21)	119.6 (5)	C(8) - C(18) - C(19)	119.8 (6)
C(10)-C(9)-C(21)	121.7 (6)	C(18)-C(19)-C(20)	121.8 (7)
C(9) - C(10) - C(11)	121-2 (6)	C(19)-C(20)-C(21)	118.9 (6)
C(10)-C(11)-C(12)	122.4 (6)	C(9)-C(21)-C(20)	122.4 (6)
C(11) - C(12) - C(13)	120-3 (5)	C(1) - N - O(2)	118.7 (5)
C(11)-C(12)-C(17)	117.9 (5)	C(1) - N - O(3)	117.6 (5)
C(13)-C(12)-C(17)	121.3 (5)	O(2)-N-O(3)	123.5 (5)

of the two naphthalene moieties [(a,b) and (d,e) rings in Fig. 2] make an angle of $25.7 (2)^\circ$. The central c ring shows the quinonoid structure. The steric repulsion is also relieved by an enlargement of the C(1)-C(13)-C(12) angle $[127.4 (5)^{\circ}]$. Moreover, the C-NO₂ and

Table 2. Bond lengths (Å) and angles ($^{\circ}$) with their C=O bonds are bent from the mean planes of the e and c rings, respectively. The twisting angle of C(1)-N and C(12)-C(11) around the line of $C(1)\cdots C(12)$ and that of C(7)–O(1) and C(8)–C(18) around C(7)···C(8) become 30.0(6) and $23.5(5)^\circ$, respectively. The $N \cdots H(11)$ distance is 2.33 (5) Å, which is significantly shorter than the sum of van der Waals radii. The NO₂ group rotates around the C(1)-N bond from the coplanar conformation. The torsion angle O(3)-N-C(1)-C(13) is $45.7 (3)^{\circ}$. The O(3)...H(11) distance becomes 2.51 (5) Å. Although the original 8,9-BzBT molecule without the NO₂ group also deviates from a planar conformation, the degree of deviation is smaller than in the present nitro compound (Fujisawa, Sato & Saito, 1981). The twisting angle of $O-C(7)\cdots C(8)$ -C(18) is 6 (1)°. This indicates that the distortion of the present molecule is caused mainly by the steric repulsion of the NO₂ group.

It is interesting to consider why the NO₂ group is substituted on the C(1) atom in spite of the large steric repulsion. The reaction mechanism will be discussed in detail elsewhere.

References

- FUJISAWA, S., SATO, S. & SAITO, Y. (1981). Acta Cryst. B37, 2194-2198.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-151. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- OHASHI, Y. (1975). Unpublished version of original HBLS program by T. Ashida.

Acta Cryst. (1987). C43, 256-259

Structure of 5-Tritylamino-1,4-dihydronaphthalene

Department of Chemistry, Rand Afrikaans University, PO Box 524, Johannesburg 2000, Republic of South Africa

(Received 16 April 1986; accepted 21 August 1986)

Abstract. $C_{29}H_{25}N$, $M_r = 387.53$, monoclinic, C2/c, a = 14.214 (5), b = 13.691 (4), c = 22.095 (7) Å, $\beta = 97.97 (3)^{\circ}$, $V = 4258.11 \text{ Å}^3$, Z = 8, $D_x = 1.209 \text{ Mg m}^{-3}$, $\lambda (\text{Mo } K\alpha) = 0.71073 \text{ Å}$, $\mu (\text{Mo } K\alpha) =$ 0.35 mm^{-1} , F(000) = 1648, T = 253 K, final R =0.073, wR = 0.044 for 1342 $[I > 3\sigma(I)]$ independent reflections. The dihydro ring has a flattened, slightly distorted boat conformation. There are no unusual bond distances or angles.

Introduction. An investigation into the possible factors determining the regioselectivity observed in the cycloaddition reactions of vinylnitrosonium ions with various 5-substituted 1.4-dihvdronaphthalenes (Holzapfel, Koekemoer & Van Dyk, 1985) required, amongst others, information on the conformation and puckering amplitude of the dihydro ring in these compounds. NMR conformational analysis of 1,4-dihydro-1naphthoic acid (based on the ratios of ${}^{5}J_{cis}/{}^{5}J_{trans}$ for the

© 1987 International Union of Crystallography

proton-proton and carbon-proton homoallylic coupling constants) (Marshall, Faehl, McDaniel & Ledford, 1977) indicated that the dihydro ring has a flattened boat conformation. This conclusion has, however, not been confirmed thus far by X-ray structure determination of this acid or any closely related compound. In addition, the possibility of differences between 1- and 1,4-dihydronaphthalenes still exists. 5-substituted Various derivatives of 5-amino-1,4-dihydronaphthalene were therefore prepared with a view to X-ray structure determination. Only the title compound (I), obtained by the reaction of 5-amino-1,4-dihydronaphthalene with trityl chloride in pyridine, yielded crystals (m.p. 455-457 K) suitable for this purpose.

Experimental. Single crystal, crystallized from dichloromethane-hexane solution, as a colourless prism with approximate dimensions $0.30 \times 0.25 \times 0.25$ mm used for intensity-data collection. Lattice parameters refined using 25 reflections in the range $5 < \theta < 15^{\circ}$. Enrafgraphite-monodiffractometer. Nonius CAD-4 chromated Mo Ka radiation, $\omega/2\theta$ mode, $2\theta_{max}$ $= 50^{\circ}$ ($h \le 16, k \le 16, -26 \le l \le 26$). Three standard reflections ($\overline{135}$, 040 and $\overline{206}$) monitored every 3600 s showed a total loss in intensity of 2.9% over the total exposure time of 30.9 h. 3912 independent reflections measured. The data are of relatively poor quality (hence high R) with a large number of weak reflections: 1990 with $I > \sigma(I)$, 1342 with $I > 3\sigma(I)$. The data were corrected for Lorentz and polarization effects and for absorption (North, Phillips & Mathews, 1968).

The structure was solved by direct methods as applied for centrosymmetric space groups in the EEES routine of SHELX76 (Sheldrick, 1976). Scattering factors from International Tables for X-ray Crystallography (1974). The structure was refined by fullmatrix least-squares procedure minimizing the function $\sum w(|F_{\alpha}| - |F_{\alpha}|)^2$ with $w = [\sigma(F)]^{-2}$. The full-matrix least-squares program SHELX76 (Sheldrick, 1976) was used. Since a difference Fourier synthesis did not reveal the positions of all the hydrogen atoms, only the hydrogen atoms bonded to N(1), C(2) and C(3) were refined individually. The rest were refined in calculated positions at 1.08 Å, and with a common isotropic temperature factor. Refinement with non-hydrogen atoms treated anisotropically and hydrogen atoms isotropically produced convergence with R = 0.073and wR = 0.044. $(\Delta/\sigma)_{max} = 0.04$. A final difference Fourier synthesis showed $\Delta \rho = \pm 0.5$ e Å⁻³.

Discussion. The final positional and isotropic thermal parameters are given in Table 1.* The atomic numbering scheme, and selected bond lengths and angles for the 1,4-dihydronaphthalene fragment are shown in Fig. 1. Fig. 2 shows a perspective drawing of one molecule of the dihydronaphthalene (I).

*Lists of structure factors, anisotropic thermal parameters and a list of bond lengths and angles (not including the aromatic H atoms) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43346 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Positional parameters ($\times 10^4$ for non-hydrogen atoms, $\times 10^3$ for hydrogen atoms) and isotropic thermal parameters (Å² × 10³)

For the non-hydrogen atoms U_{eq} is defined as the geometric mean of the diagonal elements of the diagonalized matrix of U(ij).

	x	y	Ζ	U_{eq} or U_{isc}
N(1)	2127 (4)	3833 (5)	1938 (3)	39 (4)
CU	1537 (6)	3544 (7)	4082 (3)	62 (6)
C(14)	1948 (5)	4067 (6)	3573 (3)	47 (5)
C(1)	910 (7)	2713 (7)	3871 (4)	63 (7)
C(2)	910 (7)	2346 (7)	3318 (4)	55 (6)
C(3)	1215 (5)	2340 (1)	2815 (3)	46 (5)
C(4)	1313 (3)	2702 (5)	2013 (3)	40 (5)
C(4A)	1843 (5)	3713(0)	2978 (3)	29 (5)
C(5)	2218 (5)	4228 (6)	2528 (5)	30 (J)
C(6)	2708 (5)	5104 (5)	2007(3)	43 (3)
C(7)	2807 (5)	5451 (6)	3260 (4)	33 (S) 40 (S)
C(8)	2432 (5)	4946 (6)	3/14 (3)	49 (5)
C(9)	2045 (5)	4418 (5)	1364 (3)	39 (4)
C(11)	1417 (5)	5318 (5)	1443 (3)	37(4)
C(12)	522 (5)	5155 (5)	1614 (3)	43 (5)
C(13)	-54 (5)	5916 (6)	1738 (3)	47 (5)
C(14)	257 (5)	6873 (6)	1680 (3)	51 (5)
C(15)	1138 (5)	7055 (6)	1507 (3)	52 (5)
C(16)	1715 (5)	6273 (5)	1380 (3)	44 (5)
C(21)	3039 (5)	4676 (5)	1203 (3)	41 (5)
C(22)	3111 (5)	5154 (5)	654 (3)	49 (5)
C(23)	3998 (6)	5379 (6)	483 (4)	54 (6)
C(24)	4811 (6)	5107 (6)	866 (4)	56 (6)
C(25)	4746 (5)	4624 (6)	1401 (4)	55 (6)
C(26)	3864 (5)	4395 (5)	1575 (4)	49 (5)
$\tilde{C}(31)$	1590 (5)	3745 (5)	850 (3)	39 (5)
C(32)	1918 (5)	2795 (6)	812 (3)	45 (5)
C(33)	1556 (5)	2179 (6)	341 (3)	49 (5)
C(34)	864 (5)	2504 (6)	-105(3)	50 (5)
C(35)	532 (5)	3458 (6)	-84(3)	53 (5)
C(36)	802 (5)	4079 (6)	387 (3)	50 (5)
	173 (5)	326 (5)	190 (3)	93 (32)
H(1N)	122	406	430	76 (6)
$\Pi(1A)$	133	279	430	76 (6)
	50 (4)	228 (4)	421 (3)	43 (20)
n(2)	29 (4)	171 (6)	310(3)	118 (36)
$\Pi(3)$	30(3)	222	260	76 (6)
H(4A)	102	223	203	76 (6)
H(4D)	10	250	245	76 (6)
H(0)	300	550	232	76 (6)
H(7)	310	613	417	76 (6)
H(8)	251	525	417	76 (6)
H(12)	27	441	105	76 (6)
H(13)	- /4	5//	180	70 (0)
H(14)	-19	/48	177	70 (0)
H(15)	138	780	1/4	70(0)
H(16)	239	642	123	/6 (6)
H(22)	247	535	36	76 (6)
H(23)	405	576	6	76 (6)
H(24)	550	528	74	76 (6)
H(25)	539	442	169	76 (6)
H(26)	382	400	199	76 (6)
H(32)	247	253	116	76 (6)
H(33)	182	144	32	76 (6)
H(34)	57	202	-47	76 (6)
H(35)	-1	372	-44	76 (6)
H(36)	63	482	40	76 (6)

The use of a compound with such a large substituent as the trityl group as a representative example of 5-substituted 1,4-dihydronaphthalenes in general was questionable. The phenyl rings of the trityl group are, however, far removed from the naphthalene system and the shortest distance between one of these groups and the naphthalene fragment is 2.51 Å between H(6) and

Fig. 1. Schematic drawing of the 1,4-dihydronaphthalene (I) showing the atom labelling and intramolecular bond lengths (Å) and angles (°) (mean e.s.d.'s 0.01 Å and 1°). The C-C bond lengths and C-C-C angles in the phenyl rings range from 1.37 (1) to 1.40 (1) Å [mean 1.39 (1) Å] and from 118 (1) to 122 (1)° [mean 120 (1)°], respectively.

Fig. 2. A perspective drawing of one molecule of the 1,4dihydronaphthalene (I).

Fig. 3. Drawings of the dihydronaphthalene moiety showing the relevant planes and interplanar angles.

Table 2. Conformational parameters describing the
dihydro ring

(a) Endocyclic torsion angles (°)		(b) Puckering parameters	
C(21)-C(1)-C(1A)-C(4A)	-8(1)	Q(Å)	0.108
C(1)-C(1A)-C(4A)-C(4)	-1(1)	q, (A)	0.108
C(1A)-C(4A)-C(4)-C(3)	8(1)	$q_1(\mathbf{A})$	-0.009
C(4A) - C(4) - C(3) - C(2)	-6(1)	θ(°)	94.613
C(4)-C(3)-C(2)-C(1)	4(1)	φ, (°)	192-655
C(3)-C(2)-C(1)-C(1A)	10(1)	• • •	

H(26). No atoms belonging to any of the phenyl rings are within 3 Å from the dihydro ring.

As can be seen in Fig. 3(a), C(1) and C(4) are coplanar with the aromatic ring [C(1A), C(4A), C(5),C(6), C(7) and C(8), with deviations from the plane all smaller than one standard deviation of 0.01 Å. A second plane is formed by C(1), C(2), C(3) and C(4). The angle between this plane and a second plane through C(1), C(2), C(3) and C(4), as shown in Fig. 3(a), is 9 (1)°. Marshall, Faehl, McDaniel & Ledford (1977) define the puckering of dihydro rings in terms of puckering angle, α , which in a symmetric system is the angle between the plane formed by C(1A), C(1) and C(2) [or by C(4A), C(4) and C(3)] and the plane formed by C(1A), C(2), C(3) and C(4A) (Fig. 3b). Their calculations predict an approximate puckering angle, α , of 10° for their 1.4-dihydro-1-naphthoic acid system. As can be seen in Fig. 3(b) two puckering angles of 8 (2) and 6 (1) $^{\circ}$ are obtained for the present 5-substituted 1,4-dihydronaphthalene (I).

The torsion angles for the dihydro ring are given in Table 2(a). From the interplanar angles and the torsion angles it is evident that the dihydro ring has a slightly puckered, slightly distorted boat conformation. This is confirmed by the Cremer & Pople (1975) puckering parameters given in Table 2(b) (the parameters for the nearest ideal boat are $\theta = 90^{\circ}$, $\phi = 180^{\circ}$ and O > 0 Å). A search of the 1984 version of the Cambridge Crystallographic Data Base (Allen et al., 1979) yielded one example of a 1,4-dihydrophenanthrene system as part of a tricarbonyl(1,4-dihydrophenanthrene)chromium(0) complex (Guss & Mason, 1973). In this case the bond lengths for the dihydro ring are indistinguishable from those of the aromatic rings, but the dihydro ring has a more puckered, more distorted, boat conformation with puckering constants Q = $0.228 \text{ Å}, \varphi = 201.07^{\circ} \text{ and } \theta = 102.20^{\circ}.$

References

- ALLEN, F. H., BELLARD, S., BRICE, M. D., CARTWRIGHT, B. A., DOUBLEDAY, A., HIGGS, H., HUMMELINK, T., HUMMELINK-PETERS, B. G., KENNARD, O., MOTHERWELL, W. D. S., RODGERS, J. R. & WATSON, D. G. (1979). Acta Cryst. B35, 2331–2339.
- CREMER, D. & POPLE, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Guss, J. M. & MASON, R. (1973). J. Chem. Soc. Dalton Trans. pp. 1834–1840.

HOLZAPFEL, C. W., KOEKEMOER, J. M. & VAN DYK, M. S. (1985). Abstracts. 10th International Congress of Heterocyclic Chemistry, Waterloo, Ontario, P1-P11.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Acta Cryst. (1987). C43, 259-260

Structure of 3,4-Dimethylthiazole-2-thione

By F. Ugozzoli and G. D. Andreetti

Institute of Structural Chemistry of the University and Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma, Italy

(Received 11 April 1986; accepted 15 August 1986)

S1

 C_2

N3 C4

C5 C6 C7

S8

Abstract. $C_5H_7NS_2$, $M_r = 145 \cdot 2$, orthorhombic, $Pna2_1$, a = 7.555 (4), b = 7.513 (4), c = 12.003 (7) Å, $V = 681 \cdot 3$ (7) Å³, Z = 4, $D_m = 1.42$ (1), $D_x = 1.42$ (1) Mg m⁻³, λ (Cu Ka) = 1.5418 Å, $\mu = 61 \cdot 3 \text{ mm}^{-1}$, F(000) = 304, T = 298 K, final R = 0.069 for 479 observed independent reflections. The heterocyclic ring is planar and bond distances and angles are mainly as expected, but some C–S and C–N bond distances slightly deviate from the values given in the literature for similar compounds.

Introduction. The reaction of N-alkylthiazolium halides with potassium superoxide has recently been reported by Dondoni, Galliani & Mastellari (1985). The reaction products N-alkylthiazol-2-one and the corresponding thio-analogue have been characterized by spectroscopic techniques and their structures were assigned on the basis of the X-ray analysis reported in this paper.

Experimental. Crystal $0.55 \times 0.46 \times 0.28$ mm. D_m determined pycnometrically. Orthorhombic, Laue class *mm2*, systematic extinctions h0l, h + l = 2n + 1, hk0, k = 2n + 1, space group $Pna2_1$.

Siemens AED diffractometer on-line to a General Automation Jumbo 220 microcomputer, Ni-filtered Cu Ka radiation, $\theta - 2\theta$ scan, scan width from ($\theta - 0.60$) to ($\theta + 0.60 + 0.142 + \tan\theta$)°; scan speed 3.0° min⁻¹. Cell dimensions based on 25 (θ, χ, φ) hkl measured intensities. 794 symmetry-independent reflections ($0 \le h \le 8$, $0 \le k \le 9$, $0 \le l \le 14$, $3 \le \theta \le 70^{\circ}$) collected at T = 298 K with a modified version (Belletti, Ugozzoli, Cantoni & Pasquinelli, 1979) of the Lehmann & Larsen (1974) procedure. One standard reflection, no significant deviations from the initial intensity. Corrections for Lorentz and polarization, no correction for absorption effects.

Structure solved by direct methods (MULTAN, Main, Woolfson, Lessinger, Germain & Declercq,

0108-2701/87/020259-02\$01.50

1974). 479 observed reflections $[I > 2\sigma(I)]$ in fullmatrix least-squares refinement; 88 parameters; H(5) from difference electron density map; methyl H atoms were calculated and refined as rigid groups; $\sum w ||F_o| |F_c||^2$ minimized; $w = [\sigma^2(F_o) + 0.72245F_o^2]^{-1}$, SHELX76 system (Sheldrick, 1976); $(\Delta/\sigma)_{max} = 0.090$, $\Delta \rho = -0.43$ to 0.91 e Å⁻³; the latter was found at

MARSHALL, J. L., FAEHL, L. G., MCDANIEL, C. R. JR & LEDFORD,

NORTH, A. C. T., PHILLIPS, D. C. & MATHEWS, F. S. (1968). Acta

SHELDRICK, G. M. (1976). SHELX76. Program for crystal

structure determination. Univ. of Cambridge, England.

N. D. (1977). J. Am. Chem. Soc. 99, 321-325.

Cryst. A24, 351-359.

Table 1. Final atomic coordinates $(\times 10^4)$ and equivalent isotropic temperature factors $(\times 10^4 \text{ Å}^2)$ of the non-hydrogen atoms with e.s.d.'s in parentheses

U_{eq}	$=\frac{1}{3}\sum_{l}\sum_{j}U_{lj}a_{l}^{*}a_{l}$	$i_j \mathbf{a}_l \cdot \mathbf{a}_j$.	
x	v	Z	U_{eq}
9201 (4)	4542 (4)	4367	504 (9)
8529 (15)	3829 (24)	3097 (11)	514 (49)
8517 (12)	2034 (19)	3086 (10)	451 (33)
9039 (16)	1195 (22)	4084 (12)	487 (39)
9431 (17)	2371 (23)	4862 (14)	518 (43)
8025 (18)	1006 (26)	2099 (18)	626 (52)
9161 (19)	-767 (24)	4166 (21)	668 (68)
7979 (5)	5206 (6)	2019 (5)	640 (13)

Table 2. Bond distances (Å), bond angles (°) and torsion angles (°) with e.s.d.'s in parentheses

S1-C2	1.694 (14)	N3-C4	1.410 (19)
S1-C5	1.745 (17)	N3-C6	1.462 (24)
72-N3	1.349 (23)	C4–C5	1.319 (23)
C2-S8	1.708 (16)	C4–C7	1.480 (25)
22-S1-C5	92.3 (8)	C4-N3-C6	121.6 (13)
S1-C2-S8	124.3 (9)	N3-C4-C7	121.3 (13)
S1-C2-N3	109.1 (9)	N3-C4-C5	111.4 (14)
$N_{3}-C_{2}-S_{8}$	126.6 (11)	C5–C4–C7	127.3 (15)
C2-N3-C6	122.5 (13)	\$1-C5-C4	111.3 (12)
C2-N3-C4	115-9 (12)		
$C_{2}-S_{1}-C_{5}-C_{4}$	1.0 (13)	C2-N3-C4-C5	0.7 (19)
$C_{5}-S_{1}-C_{2}-S_{8}$	179.8 (11)	C2-N3-C4-C7	-177.2 (14)
$C_{5} = S_{1} = C_{2} = N_{3}$	-0.6(11)	C6-N3-C4-C7	1.8 (22)
$S_{1}-C_{2}-N_{3}-C_{4}$	0.0 (16)	C6-N3-C4-C5	179-7 (14)
S1 - C2 - N3 - C6	-178.9 (12)	N3-C4-C5-S1	-1.1 (17)
S8-C2-N3-C6	0.7 (21)	C7-C4-C5-S1	176-7 (14)
S8-C2-N3-C4	179.6 (11)		

© 1987 International Union of Crystallography